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The paper describes a hydrodynamic stability analysis of the flow in an alluvial 
channel in which dunes have developed along the bed. The purpose is to develop 
a mathematical model describing the three-dimensional flow leading to instability 
of an originally straight channel. The model offers an explanation of the fact that 
some channels tend to meander, others to braid. 

1. Introduction 
The particular river-morphology problem known as meandering has been 

studied by several scientists and from many different points of view, as will 
emerge from the short survey given in this introduction. 

The first quantitative description, today known as the regime theory, was 
initiated mainly by British engineers on the basis of an extensive collection of 
data from channels in India. In  the original form, the regime equations related 
the meander length L to the formative discharge Q only, 

L N JQ, 

but later versions have modified this simple relation to include some dependence 
on the sediment properties, see for instance Blench (1966). 

As a supplement to the field observations, laboratory investigations have been 
used intensively in recent years and have contributed considerably to the under- 
standing of river mechanics (Leopold & Wolman 1957; Ackers & Charlton 1970). 

On the theoretical side several a.ttempts have been made to understand the 
basic mechanism of meandering. Most attempts have been purely deterministic, 
but attention should be paid to an interesting statistical approach introduced 
by Langbein & Leopold (1966) in the so-called theory of minimum variance. 

The possibility of describing the origin of meandering as a problem of in- 
stability was investigated in detail by Callander (1969), using a two-dimensional 
flow model. This theory neglects the velocity variation along verticals and 
includes the internal friction by a one-dimensional description, corresponding to 
gradually varying flow. Nevertheless, the results are in rather good agreement 
with experiments. 

Engelund & Hansen (1967) suggested that the mea.nder length is determined 
by the hydraulic resistance (friction factor) and the depth. They also 
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demonstrated that this does not contradict the regime theory, although one 
would probably expect this on a superficial consideration. 

Finally, it should be mentioned that Einstein & Shen (1964) succeeded in 
explaining important features of meandering in straight alluvial channels by 
considering secondary currents induced by the difference in shear stress at  the 
two banks or by the asymmetry of the channel cross-section. This work was later 
continued by Shen & Komura (1 968). 

In  the present paper an attempt has been made to develop a theory taking 
account of the three-dimensional character of the flow. Not much work has been 
done on three-dimensional flow in channels, but reference may be made to a paper 
by Reynolds (1965) considering the formation of dunes. This work was later 
continued by Engelund & Fredspre (1971). 

2. The basic equations 
As in every hydrodynamic stability analysis we consider a basic (undisturbed) 

flow on which a perturbation is superposed. For the basic system we consider 
a steady and uniform flow in a channel with rectangular cross-section. The side 
walls are fixed, while the bed consists of non-cohesive sediment. The channel 
width is B and the water depth D,  as indicated in the definition sketch, figure 1. 
We introduce a co-ordinate system with the x1 axis in the flow direction, xz 
horizontal in the water surface and x3 perpendicular to the bed. 

If the width B is sufficiently large compared with the depth D (which is usually 
the case in natural streams), the direct effect of the side walls is restricted to rather 
narrow regions. In  order to facilitate the analysis the side-wall friction has been 
neglected in the following. In  these circumstances a two-dimensional turbulent 
flow has a mean velocity profile given by the defect law 

where U, is the surface velocity, U the velocity at  a distance x3 below the surface, 
and I;Tfo is the friction or shear velocity, defined as 

where T~ denotes the bed shear stress and p the fluid density. 

of the following form, putting g = x3/D: 

P o -  U,/UfO = f@3/D)> (1) 

qo = (TO/P)*, (2) 

For the present analysis, i t  is convenient to assume a velocity distribution 

u = UoCOSb’<, (3)  

Or 

As the right-hand side is to be a universal function of <, according to (l), and 
hence must contain no parameters, it is seen that p must have the following form: 

the factor 14 being selected to obtain the best fit for the actual velocity profile. 
Equation (3) gives a satisfactory description of the velocity profile in the upper 

part of the flow, but fails to describe the abrupt decrease of velocity taking place 
close to the bottom. Instead, (3) indicates a finite velocity U,, at the bottom: 

b’ = ~ 1 4 W t ~ l * ,  (4) 

u,, = u,cosp. ( 5 )  
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FIGURE 1. Definition sketch. 

It should be mentioned that the distribution given by (3) is very close to the 
parabolic velocity distribution obtained by assuming a constant eddy viscosity e 
(Engelund 1970, p. 227). 

In  order to investigate the stability of the described uniform flow, we consider 
next the flow taking place on a perturbed bed. This means that the plane bed is 
deformed to a position h above its original position as indicated by the dotted 
curves in figure 1. The character of meandering requires a double-periodic dis- 
turba.nce, so that h is given by 

h = h, cos k,x,exp (iklxl), (6) 

in which k ,  is the amplitude, and k, and k, are the cyclic wavenumbers. In 
a first-order theory second and higher powers in h, are neglected. 

The perturbed flow may now be described mathematically by the equation 

(7) 
of motion avi 1 aP i aTii 

axi 3 paxi paxj 
- v. = - - - + g . - - -  

using Cartesian tensor notation. In ( 7 )  wi is the velocity vector, p the fluid pressure, 
gi the acceleration of gravity and rij the deviatorie stress tensor. The complete 
velocity vector vi is now written as the sum of the basic velocity U, and the 
perturbation velocity zci: vi = ui+ui. 

For the basic flow we find on the assumptions stated above that 

u, = U(x,);  u, = u, = 0. 
19-2 
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Again, in a 1inea.r theory ui is small compared with U ,  so that second- and 
higher-order terms may be neglected. In  the deviatoric stress only the shear 
stresses in the horizontal plane are retained. The complete expression is 

In the circumstances considered, where only very large wave periods are 
investigated, it is further justifiable to regard the deviations in the x1 and x2 
directions as small quantities when compared with the derivatives with respect 
to x3. 

For the gravity term we substitute the expression 

gi = -a(gzt/axi, 

where z is the level (geometric head). Then, the expanded form of (7 )  becomes 

where primes denote differentiation with respect to xa. To eliminate the non- 
periodic part we write 

(PlP) + 92 = S ( Z 0  + D )  + p ,  (8) 

the index 0 referring to the undisturbed bed level. Then P is periodic and 

where So is the mean channel slope. For the uniform basic flow the following 
relation will hold: 

Bun = -gS,, 

so that equations (7a ,  b, c) are reduced to  

Further, the condition of incompressibility is expressed by the equation of 
continuity 

aui/axi = 0. 
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The assumption of periodicity is now introduced by the following expressions, 
in which 5 = x3/D: 

P = Uto$(5) cos k,x2exp (iklxl), 

u1 = ub0.f;(5) coS k2x2  exp (iklxl), 

u2 = iU,, f L(5) sin k2x2 exp (iklxl), 

u3 = i U b o f 3 ( ( )  cos k,x,exp (iklxl). 

( 1 0 4  

( lob )  

(104 

( 1 0 4  

4 and fi are unknown complex functions of 5. The continuity equation makes 
it possible to eliminate one of these unknown functions, say fl: 

When the expressions (10) are inserted in equations (9), we end up with the 
following basic equations: 

the prime now indica.ting differentiation with respect to 5. 
The immediate problem is now to determine the unknown functions from (1 1) 

and (12). In  order to derive an equation for only one of the unknown functions 
the following procedure has been applied: f2 is found from (11) and inserted 
in (1271). Elimination of q3 between (12a) and (12b) then gives a relationship 
between fl and f3. This equation is differentiated with respect to 6. Then (12a) 
is differentiated with respect to c, and 4’ is eliminated using (12c). From the 
resulting two equations the following differential equation in f 3  is obtained: 

or 

With f3  known we may obtain f2 from (12b) and (12c): 

Finally, fi is found from ( 11). 
For later use we notice that the following expression for Q may be obtained 

from (12a), (12b) and (11): 
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FIGURE 2.  Sketch illustrating meandering (m = 1) and braiding (m = 2 and 4). 
Typical streamline patterns (above) and cross-sections (below). 

3. The boundary conditions 
The first requirement concerns the impermeability of the side walls expressed 

by u2 = 0 for x2 = 0 and x2 = B. Prom (IOc) we find that this condition is ful- 
filled if 

where L, is the wavelength and m is a positive integer; WL equal to  unity corre- 
sponds to ordinary meandering, while m greater than unity describes a braiding 
stream, see figure 2. 

k 2 B = m r  or mL,= 2 B ,  (16) 

Along the bed we have the kinemamtical boundary condition 

UQ = - U(ah/&,), ( = I -h/D, 

which expresses the impermeability of the river bed. After insertion of (6) and 
(IOd), this reduces to 

as a linear theory permits the undisturbed bed level (,$ = 1) to be used instead 
of the actual one, ,$ = 1 - h/D. 

(17) f 3 ( 1 )  = -h,k,  

Along the free water surface the following conditions must be fulfilled. 
(i) The pressure p must be zero, and the water surface consist of streamlines. 
(ii) The two shear stress components 713 and T~~ must vanish. 
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Prom (i) we conclude that the velocity vector must be perpendicular to the 
pressure gradient, which is expressed by the equation 

vi(aP/a%) = 0, 6 = 7, (15) 

where 71 denctes the deviation of the actual water surface from the undisturbed 
level, see figure 1. When the pressure gradient is evaluated from (8) and we put 

vui = + ui, this boundary condition becomes 

or, when (10a) and ( I O d )  are inserted, 

f 3 (0 )  = - (k, uo U,,/g) W) ( 1 9 )  

as a linear theory permits the undisturbed level ([ = 0) to be used instead of the 
actual one, 6 = 7. 

The condition of vanishing pressure is expressed by 

-911 = P(5 = 7), (20)  
which is used below. 

transverse component 723 vanishes if 
Next, we consider the shear stresses along the surface. It is seen that the 

av,/ax3 = 0, 6 = 7, 
or, from (IOc), f’A(0) = 0. 

As far as the longitudinal component T~~ is concerned, the derivation proceeds 

a( u +.u,)/ag = 0, 6 = 7, (22) 
in a similar way: 

but there is the minor difference that the curvature of the unperturbed velocity 
profile introduces an additional linear term. Applying a truncated Taylor series 
we get [u’]s=7 = U’(0)  + U”(0) q/D = U”(0) y/D. 

By application of this and of (lOa), ( l o b ) ,  ( l l ) ,  (19), (20) and (21 )  condition 

f m  +P”f3(0) = 0. (23) 
(22) may be rewritten as 

Finally, two boundary conditions are related to the hydraulic resistance 
along the river bed. Since the bed is composed of erodible a1luvia.l sediment, 
a major contribution to the roughness comes from the formation of dunes and 
will consequently vary spatially, when the flow conditions change. In  the present 
context these dunes a.re regarded as roughness elements. 

Hence, what we need now is a relation describing the behaviour of alluvial 
streams in terms of the flow parameters. Here, it is assumed that the longitudinal 
hydraulic resistance can be calculated according to Engelund’s similarity hypo- 
thesis (Engelund 1967;  Engelund & Hansen 1967): 
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in which s = relative density of the sediment, d = representative grain diameter 
(the mean fall diameter is used in the following) and S = actual energy gradient. 
D' is calculated from 

V/(gD'S)a = 6 +  2-51n (D'/2*5d). (27) 
For the uniform basic flow we get from (24) and (27) 

06 0 * 0 6 ( ~  - 1) O-4S0 D/d 
D SoD/d s - 1  

+ _ -  - 

and 

which for given values of the independent parameters (D/d,  So and s) determines 
the dependent parameters V,&, and the Proude number Po = SiV,/U,,. 

For the perturbed terms in (24) and (27) we get after some manipulation 
(linear theory) 

where 
clfl(l) + ' 2 f 3 ( l )  +'3f3(') = '4 - - ' z k 2  D ( f 2 ( 1 )  - f 2 ( O ) ) ?  (30) 

(v , /v ,o)  DAP 
zz 2*5(Dh/D)& + *(&,/%o) ' 

GI E -- a J 0  ( o * : y d  + ice- 2) , 
D q 0  

c2 - / Y c O  cot p ,  C ,  ( [DJD]  - +c0) COB p ,  

Finally, we assume that the shear stress of the bed has the same direction as 
the velocity vector: 

aU h 723 = - €  -2 = u2 - u.2 for c =  I-- 
P ax, fo u,, D' 

which gives the condition 

(32) 

8 = 0.077DUf0. (33) 

D Ufzo f;( 1) + ----f;J( 1) = 0. 
EGO 

In the following calculation we have used 

4. The numerical approach 
The two ordinary differential equations (13) and (14) and the necessary two- 

point boundary conditions (17), (19), (21), (23), (30) and (32) are solved by mixed 
orthogonal collocation. The basic procedure is described by Villadsen & Stewart 
(1967). Among the virtues of the method of orthogonal collocation are its great 
generality and ease of application. It is relatively easy to  set up the equations, 
to solve them and to vary the order of convergence. 

The basic idea of orthogonal collocation is that the solution of the differential 
equation is represented as a finite series of orthogonal polynomials, and the 
unknown coefficients in this representation are found by satisfying the associated 
conditions and the differential equation at  an appropriate number of selected 
points (the collocationpoints). The zeros of the shifted Legendre polynomials have 
been used as the collocation points. The integration off in (30) is performed using 
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FIGURE 3. Typical example of the distribution of ji (lateral velocity component, see (10~)) 
and of f3 (vertical velocity components, see ( 1 0 d ) )  renormalized by division by &/D. Note 
that the lateral velocity component has opposite signs in the upper and lower part of 
a vertical (indicating helical flow) and that it is very much larger than the vertical com- 
ponent. The curves correspond to klD = 0.14, k,D = 0.15, &/U,,, = 16 and a Froude 
number F,, = 0.20. 

the Gauss-Legendre quadrature formulae, which approximate the integral of 
a function by a weighted sum of function values at the interior collocation points. 
In  the practical calculations it is easier not to use (14) directly. From (1 l),  (12cc) 
and (12 b)  we get an alternative formula 

Figure 3 shows a typical example off; and f renormalized by division by h,/D. 
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5. The stability criterion 
So far, we have been concerned with the problem of steady flow over a fixed 

bed. Strictly speaking, this flow pattern is not adequate for investigation of the 
development of the meandering, but here it is important to note that the migra- 
tion velocity of the macroscopic features of the river bed, such as shoaling and 
meandering, is so extremely small that its neglect will lead to no detectable 
error at all. 

The standard factor exp [iklxl] used so far to describe the double periodicity 
should consequently be replaced by 

exp [ik,(xl - at)] = E ,  

in which a = a,+iai is the complex migration velocity of the sand waves. For 
example, we must have h = ho(cos k2x2)  E. 

The continuity equation for the sediment motion is 

in which q, denotes the rate of transport of sediment (volume of sediment grains 
per second per unit width) and n is the porosity of the sand. 

Now we need a relation between q, and the hydraulic parameters. From 
Engelund's similarity hypothesis (see Engelund 1967) we have 

j - ~  = o-ieQ, ( 36) 

f = 2r13/pV2 for ( = 1 - h/D (37 )  

(35) 

where f is the friction factor defined as 

and the non-dimensional sediment discharge is defined by 

Q = 4Sll"S - 1) gd31i. 

For the transverse component qS2 we assume that 

where c is a non-dimensional positive proportionality factor and qso denotes the 
transport rate for the basic flow. When ahlaz, > 0, the grains are displaced 
downwards by gravitational forces, which reduce the transverse sediment trans- 
port, and vice versa. 

After substitution into the continuity equation (35) we get, after some 
manipulation, the following expression for the complex migration velocity: 

a =  klD(1-n)  qsO {c5 - icfk, D)", (40) 

where c5 = klD{ - $ - 2Pcot /3} - 2Pk2D{f2( 1)  -f2(0)> cot P- 2/3f3(1) cot /3 
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FIGURE 4. The amplification coefficient A as a function of the non-dimensional longitudinal 
wavenumber k, D.  The parameter is the non-dimensional lateral wavenumber k ,  D. The 
curves correspond to s = 2.65, D/d = 10000 and so = 1.5 x i.e. V,/UfO = 16 and the 
Froude number F ,  = 0-20. The constant c in (40) is put equal t o  zero. 

The flow is unstable if the imaginary part ni of a is positive. The amplification 
factor is exp (ai kl), where 

{Im{c,Fc(k2D)2). (41) 
Qso ai k, = ~ 

Dfl-n)  

The last factor in this expression will be called the amplification coefficient and 
will be denoted by A. 

6.  Discussion of results 
Some numerical examples should be discussed in order to figure out the extent 

to which the mathematical model describes essential features known from 
experiments or from nature. 

The amplification coefficient A was evaluated as a function of the channel 
width (characterized by k2D) and the meander length (characterized by k,D). 
A representative example is given in figure 4. The curves are sketched for c = 0. 
Any other value of c will only give each curve a vertical parallel displacement. 

For all parameter combinations examined it was found that for some interval 
of klD the amplification factor assumed positive values, indicating instability. 
This is in accordance with the empirical fact that natural channels a.re found to 
meander or a t  least create more or less pronounced alternate shoals on apparently 
straight reaches. 

An interesting feature is the peak of the curves, indicating that the amplifica- 
tion has a maximum. As was mentioned by Callander (1969), the greatest value 
of A for a given k2D determines the wavelength of the developing meander. The 
theory Beems to predict meander lengths of at  least the right order of magnitude. 
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FIGURE 5. Max {A}  as a function of k,D. The curves correspond to s = 2.65, Dld = 10000 
and so = 1.5 x lo4, i.e. V,/U,o = 16 and the Froude number Po = 0.20. 

A striking feature is that the peak value max (A}  has maximum for a certain 
value of k,  D. This is illustrated in figure 5, where max { A }  is plotted against k, D. 
The curve is sketched for c = 2. Any other value of c will give a curve with a 
similar shape but with a different length scale. At present very little is known 
about the value of G, but preliminary experiments seem to indicate values of c 
smaller than unity. This fact has the interesting implication that it offers an 
explanation of the phenomenon of braiding, which will be accounted for shortly. 
Let us consider the particular abscissa k,D for which the ordinate equals the 
ordinate corresponding to 2k,  D,  see figure 5. 

In  the situation thus defined the amplification is the same for a channel with 
half the actual width, or - put in another way - we get the same amplification 
for m = 1 and rn = 2, the number m being defined by (16). 

For k, > k, we shall always find the greatest amplification for m = 1. In 
physical terms this means that the river will meander. For Ic, slightly smaller 
than k, we shall find the greatest amplification for m = 2, which means that 
the river is braiding. For still smaller values of k ,  the maximum amplification 
will occur for m = 3, 4 and so on. 

Put in very simple words, the analysis indicates that for given hydraulic 
resistance and depth the river will exhibit meandering if the width is smaller 
than some threshold value B,, while a wider river will braid in two or more 
courses - the more, the wider it is. This result seems to agree with the observations 
reported by Leopold & Wolman (1957). 

A direct comparison between the mathematical model described in this paper 
and the many published data concerning quantities such as meander length, 
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etc., is unfortunately not possible. Usually the field data originake from river 
meanders with a large (usually unspecified) sinuosity, while the present paper is 
concerned only with the initial stability of straight channels. The sinuosity that 
develops in nature because of the instability changes the hydraulic parameters 
(such as the slope) quite considerably. 

Some flume experiments account carefully even for the initial part of the 
process, but axe nevertheless unsuitable for comparison because the bed form is 
usually ripples rather than dunes. Little is known about the hydraulic resistance 
of ripple-covered beds, but it is certain that it differs considerably from that of 
a dune-covered bed. 

7. Discussion of basic assumptions 
In  order to estimate the reliability of the mathematical model suggested above, 

a brief discussion of the basic assumptions will be needed. This will reveal some 
possibilities for future improvements. 

Compared with most field conditions the present model gives an unrealistic 
treatment of the side banks. Even for the case of fixed banks the description is 
not quite realistic, because the particular secondary currents discussed by Shen & 
Komura (1968) have not been taken into account. 

Another important point is the application of a simplified velocity profile in 
the basic flow and the use of the eddy-viscosity concept. The latter is motivated 
by several successful examples in engineering hydraulics. 

The hydraulic roughness of a duned bed and its variation with flow conditions 
is a subject on which our knowledge is very uncertain and approximate. This 
will, however, mostly affect the numerical magnitude of our result, but hardly 
the principle. 

Another point may be of importance, as far as the numerical predictions are 
concerned. This is the question of the influence of a certain part of the sediment 
load being carried in suspension rather than as a bed load, as was assumed here. 
As the formative discharge is usually rather high, we must in practice expect that 
a certain fraction of the total load is suspended. This will introduce a phase shift 
between the tractive shear and the total sediment load not accounted for in the 
present model. 
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